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Abstract. A new technique for using the CFD commercial code FLUENT c© to simulate inductively coupled
plasma torches by means of two-dimensional axisymmetric models is presented. The method is based on
an external user-defined function (UDF) which fully solves the electromagnetic field equations, letting the
FLUENT c© built-in module calculate only the plasma temperature and velocity fields inside the torch
region. In this framework, computations have been carried out for LTE, optically thin argon plasmas at
atmospheric pressure, using extended grid models with either magnetic dipole or vanishing vector potential
boundary conditions for the electromagnetic field. It is shown that our newly developed technique is
up to 60% faster on each iteration than that using user-defined scalars (UDS) previously proposed in
the literature, as the need of solving flow field equations also outside the plasma zone is eliminated.
Calculations are also performed using exact integral boundary conditions for the vector potential, as
given by the standard electromagnetic field approach, taking into account the effects of both exciting
and induced currents. The corresponding results are compared with the approximate ones obtained by
employing extended grid models, showing that for small radial dimensions of the electromagnetic field
domain, the magnetic dipole boundary conditions give more realistic solutions than those assuming a
vanishing vector potential.

PACS. 52.75.Hn Plasma torches – 52.65.-y Plasma simulation – 52.80.Pi High-frequency
and RF discharges

1 Introduction

Mathematical modelling is a powerful tool to deeply inves-
tigate physical and chemical phenomena occurring within
inductively coupled plasma torches (ICPTs). Various nu-
merical models of increasing complexity have been pro-
posed over the years with the aim of obtaining a more and
more realistic prediction of plasma behaviour and chemi-
cal processes inside the torch. Current state of the art in
this research field includes the fully 3-D description of the
system, as recently performed by the authors by means
of either complete [1] or simplified [2] approaches for the
treatment of the electromagnetic field.

Nevertheless, two-dimensional axisymmetric models
are still widely used for calculating the plasma temper-
ature, flow and concentration fields in ICPTs. In this re-
gard, many efforts have been devoted in the last years
to continuously improve 2-D models, e.g. by taking into
account also turbulence phenomena [3] or including some
important 3-D effects due to the non-axisymmetric shape
of the induction coil [4].
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Besides this, special care has been dedicated to op-
timize the treatment of the electromagnetic (EM) field,
which usually represents a critical task in the modelling
of induction plasma torches. This is due to the fact that
the standard (ST) vector potential formulation employed
within most 2-D models [5–7] relies on the classic Biot-
Savart integral boundary conditions, which introduce a
strongly non linear coupling between the boundary values
of the vector potential and the current density distribution
induced in the plasma. As a consequence, an iterative ap-
proach must be adopted to solve the EM field equations,
leading to slow convergence of the numerical procedure.
In order to overcome this problem, it is possible to re-
place the ST formulation with more efficient approaches
in which the computational domain for the EM field ex-
tends beyond the plasma discharge region and far field
boundary conditions are adopted; in this frame, magnetic
dipole boundary conditions (MDBC) have been proposed
by some of the authors [8,9] as well as the employment of
extended field (EF) vanishing conditions [4,10].

In addition to the improvement of 2-D models, much
work has been done to suitably customize the CFD
commercial code FLUENT c© for simulating RF thermal
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plasma sources. FLUENT c© offers important advantages
in modelling, such as the possibility of studying compli-
cated geometries, using different physical and numerical
models and easily generating both structured and unstruc-
tured meshes. The need for customizing the basic code lies
in the fact that, by default, the FLUENT c© built-in solver
can only treat mass, momentum and energy conservation
equations, but it does not include any computational mod-
ule for solving the electromagnetic field equations involved
in the modelling of induction plasmas.

To overcome this difficulty, Boulos et al. [4,10] exploit
the FLUENT c© feature which allows one to add new user-
defined scalars (UDS) to the variables basically employed
by the built-in solver. In particular, they define two UDS
for the real and imaginary parts of the complex vector
potential and then let the FLUENT c© routines solve the
corresponding governing equations. This approach is quite
simple to implement but has some numerical drawbacks
due to the intrinsic customization limits of the software.
In fact, FLUENT c© requires all the equations of the model
to be solved on the same domain, which implies that even
the computation of the fluid dynamic variables must be
extended outside the torch region when a far field ap-
proach is used for the treatment of the electromagnetics
of the system. This might result in numerical unstabilities
and/or slow convergence of the solution process.

In this work, a new technique for the simulation of
ICPTs within FLUENT c© environment is presented. Fol-
lowing this technique, vector potential equations are fully
solved by means of an external C user-defined function
(UDF) developed by the authors, which is linked to the
FLUENT c© built-in code. In this way, the latter can be
completely dedicated to solve only flow field equations in
a domain restricted to the torch region.

In the present paper, results obtained by means of our
new UDF technique will be presented, showing the effects
of using ST, MDBC and EF approaches for the treatment
of the EM field on the calculated plasma temperature,
velocity and electromagnetic field distributions. Moreover,
computations have been carried out using also the UDS
technique in order to compare its performances with the
ones of the new method proposed in this work.

2 Modelling approach

The following basic assumptions have been adopted
throughout this work:

– the torch is represented by a fully axisymmetric
configuration;

– the plasma is assumed to be optically thin and in local
thermodynamic equilibrium (LTE) under atmospheric
pressure conditions;

– the flow is laminar and the tangential component of
plasma velocity is not taken into account;

– viscous dissipation and pressure work in the energy
equation are neglected;

– displacement current associated with the oscillatory
magnetic field is assumed to be negligible.

2.1 Electromagnetic field treatment

The electromagnetic field generated by the current density
flowing through the coil, Jcoil, and that induced in the
plasma, Jind, is governed by Maxwell’s equations which,
in our case, can be written as:

∇ ·E = 0 (1)
∇ ·B = 0 (2)

∇× E = −∂B
∂t

(3)

∇× B = µ0(Jcoil + Jind) (4)

where E and B are the electric and magnetic field in-
tensities, respectively, and µ0 is the permeability of the
free space. The displacement current density is consid-
ered negligible as compared to the conductive one, since
for the current frequency and torch geometry considered
here, the wavelength of the EM field is much greater than
the characteristic dimensions of the torch. Moreover, ac-
cording to the quasi-neutrality property of plasmas, the
electric charge density is supposed to be zero everywhere.
For our purposes, it is convenient to introduce the mag-
netic vector potential, A, which is defined by:

B = ∇× A. (5)

Using expression (5) in equation (3) and considering that
in the absence of electrostatic fields the scalar potential
vanishes, we obtain the relation between A and E:

E = −∂A
∂t

· (6)

Inserting equation (5) into (4) and making use of the
identity:

∇×∇× A ≡ −∇2A + ∇(∇ ·A) (7)

we obtain, by means of the Coulomb gauge, ∇ ·A = 0:

∇2A = −µ0(Jcoil + Jind). (8)

The induced current density, Jind, can be expressed by
simplified Ohm law:

Jind = σE = −σ
∂A
∂t

(9)

where σ is the temperature-dependent electric conductiv-
ity of the plasma. Hence, equation (8) can be written as:

∇2A − µ0σ
∂A
∂t

= −µ0Jcoil. (10)

Assuming that both Jcoil and A are characterized by a si-
nusoidal time variation with frequency f , the classic com-
plex notation can be used to eliminate the time variable
in equation (10). To do so, we express Jcoil and A as:

Jcoil(r, t) = �
[
J̃coil(r)eiωt

]
(11)

A(r, t) = �
[
Ã(r)eiωt

]
(12)
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where J̃coil and Ã represents the corresponding phasors
and ω = 2πf . Using expressions (11, 12), equation (10)
becomes:

∇2Ã − iµ0σωÃ = −µ0J̃coil. (13)

Under the assumption of axisymmetric configuration for
the induction circuit, the electric current density flowing in
the coil and, consequently, the magnetic vector potential,
will only have tangential components, i.e.:

J̃coil = (0, Jcoil, 0) (14)

Ã = (0, Aθ, 0) (15)

and thus equation (13) reduces to:

1
r

∂

∂r

(
r
∂Aθ

∂r

)
+

∂2Aθ

∂z2
−

(
Aθ

r2
+ iµ0σωAθ

)
=

− µ0Jcoil. (16)

Writing Aθ by means of its real and imaginary compo-
nents, Aθr and Aθi:

Aθ = Aθr + iAθi

equation (16) can be split into the followings:

1
r

∂

∂r

(
r
∂Aθr

∂r

)
+

∂2Aθr

∂z2
− Aθr

r2
+ µ0σωAθi = −µ0Jcoil

(17)

1
r

∂

∂r

(
r
∂Aθi

∂r

)
+

∂2Aθi

∂z2
− Aθi

r2
− µ0σωAθr = 0. (18)

Provided that Jcoil is given, equations (17, 18) can be
solved to calculate the vector potential. Once the latter is
known, relations (5, 6) are used to obtain the components
of the magnetic and electric fields, which are given by:

Bz =
1
r

∂

∂r
(rAθ) (19)

Br = − ∂

∂r
(Aθ) (20)

Eθ = −iωAθ. (21)

Various methods differing in terms of type of computa-
tional grid and boundary conditions, can be adopted to
solve equations (17, 18).

In this work, both the MDBC [8] and EF [10] far field
approaches, along with the ST model formulation [5], have
been considered. For the sake of clarity, a brief review of
these methods is given in the following sections.

2.1.1 ST approach

The ST approach assumes that the computational do-
main for the EM field calculations is limited only to the
plasma region (i.e., to the zone defined by 0 ≤ r ≤ R0;
0 ≤ z ≤ LT , see Fig. 1). Since no excitation currents are
present in this region, equations (17, 18) with Jcoil = 0

L0

L1

L2

LT

dc

Rc

R0

δw

r2

δm

r3

δt

Q1 Q2 Q3

r

z

z = 0

TEKNA PL-50
PLASMA TORCH

Fig. 1. Schematic of the plasma torch.

are used to calculate the vector potential. According to
the axisymmetry hypothesis, the vanishing condition:

Aθ(0, z) = 0 (22)

is set on the axis of the torch, while at the other bound-
aries of the domain the values of Aθ can be obtained us-
ing the well-known formula of the single current-carrying
loop [11], summing up all the contributions coming from
both excitation and induced currents flowing in the coil
and in the plasma, respectively. To numerically solve equa-
tions (17, 18), the plasma region is to be divided into Ncv

cylindrical control volumes and the vector potential in
each point (Rb, Zb) of the boundaries can be expressed as:

Aθ(Rb, Zb) = − iωµ0

2π

Ncv∑
j=1

(σjAθj)∆Sj

√
rj

Rb
G(kj)

+
µ0Ic

2π

Nc∑
i=1

√
Ri

Rb
G(ki) (23)

where the quantity (−iωσjAθj)∆Sj in the first summa-
tion in the right-hand side of equation (23) represents the
induced current flowing through the cross-section, ∆Sj ,
of the jth control volume, located at the point (rj ,zj),
while the second summation extends over the Nc cylindri-
cal loops of radius Ri and height Zi, in which the coil re-
gion is discretized. Assuming a uniform distribution of the
current density in the coil, the current, Ic, flowing through
the cross-section of each loop, ∆St, can be expressed as:
Ic = Jcoil∆St. The function G(k) in equation (23) is
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given by:

G(k) =

(
2 − k2

)
K(k) − 2E(k)

k
(24)

being K and E the elliptic integrals of first and second
kind, respectively, and

kj =

[
4rjRb

(rj + Rb)
2 + (Zb − zj)

2

] 1
2

(25)

ki =

[
4RiRb

(Ri + Rb)
2 + (Zb − Zi)

2

] 1
2

· (26)

Boundary conditions (23) are rigorous, that is, they are
derived analytically from equation (13). However, due to
the term accounting for the effects of the induced currents,
the whole distribution of Aθ in the plasma region needs
to be known to determine the vector potential at each
point on the boundaries. Thus, an iterative approach has
to be employed to solve the electromagnetic field equa-
tions, leading to slow convergence of the numerical pro-
cess. To overcome such difficulty, the contribution of the
induced currents in equation (23) can be neglected with
respect to that due to the coil. However, as in most cases
this represents a quite drastic approximation, all the terms
in (23) have been retained here.

2.1.2 MDBC approach

Unlike the ST method, the MDBC approach [8] uses a
computational grid which extends well outside the plasma
discharge region, so that simpler boundary conditions can
be adopted for the vector potential. The electromagnetic
field is calculated by solving equations (17, 18), setting
Jcoil = 0 everywhere except in the discretized coil region.

Boundary conditions are defined by assuming that, at
the borders of the extended domain, the torch can be re-
garded as a single loop carrying a current equal to the sum
of all the currents flowing in the plasma and in the coil.
Namely, we suppose that, far enough away from the dis-
charge, the whole system can be treated as a single mag-
netic dipole placed at the mid-coil point, with momentum
parallel to the axis of the torch.

Under such an assumption and taking a cylindri-
cal (r, z) reference frame with the origin at the dipole and
z-axis parallel to its momentum, the vector potential at
sufficient distance from the torch is given by the classic
expression:

Aθ = C
r

(r2 + z2)
3
2

(27)

where C is a constant which accounts for the momentum of
the dipole, whose value is not known a priori as it depends
upon the induced currents which, in turn, depend upon
the vector potential in the discharge region. However, the
value of C is not actually required for our purposes. In

fact, taking the r-derivative of expression (27) and using
the (27) itself, we obtain the relation:

∂Aθ

∂r
=

[
1 − 3r2

(
r2 + z2

)−1
]

r
Aθ (28)

which can be assumed as boundary condition for Aθ at the
border r = Ret (see Fig. 2) of the computational domain.
Likewise, taking the z-derivative of (27), we have:

∂Aθ

∂z
= − 3z

r2 + z2
Aθ (29)

which provides the boundary conditions to be set at the
two borders of the extended domain located on planes
perpendicular to the z-direction. Finally, on the axis of
the torch, the axisymmetry condition (22) is imposed.

Expressions (28, 29) can be directly embedded into the
discretized form of the vector potential equation. There-
fore, in this case, no iterations on the boundary values
are required to obtain Aθ. However, a numerical problem
of bigger dimension has to be solved with respect to the
ST approach, due to the wider domain employed for the
EM field calculations.

2.1.3 EF approach

In this case, an extended grid similar to that adopted
in the MDBC approach is used for the treatment of the
EM field, but the following conditions:

Aθ(Rb, Zb) = 0 (30)

corresponding to a vanishing value for Aθ at the outer
boundaries of the EM field domain are applied instead
of (28) and (29).

2.2 Fluid dynamic model

Fluid dynamic equations for the plasma are as follows:

– continuity:

1
r

∂

∂r
(rρvr) +

∂

∂z
(ρvz) = 0; (31)

– momentum:

ρ

(
vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+

2
r

∂

∂r

(
µr

∂vr

∂r

)

+
∂

∂z

[
µ

(
∂vr

∂z
+

∂vz

∂r

)]
− 2µvr

r2
+ Fr (32)

ρ

(
vr

∂vz

∂r
+ vz

∂vz

∂z

)
= −∂p

∂z
+ 2

∂

∂z

(
µ

∂vz

∂z

)

+
1
r

∂

∂r

[
rµ

(
∂vz

∂r
+

∂vr

∂z

)]
+ Fz ; (33)
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torch region

Fig. 2. Computational grids for the electromagnetic field and details of the coil discretization for (a) UDF and (b) UDS tech-
niques.

– energy:

ρ

(
vr

∂h

∂r
+ vz

∂h

∂z

)
=

1
r

∂

∂r

(
r

k

cp

∂h

∂r

)

+
∂

∂z

(
k

cp

∂h

∂z

)
+ QJ − QR (34)

where h is the plasma specific enthalpy; vr, vz are the ra-
dial and axial components of plasma velocity; ρ, k, µ, cp

are the density, thermal conductivity, viscosity and spe-
cific heat at constant pressure of the plasma, respectively;
p is the pressure; QJ and QR are the Joule heating rate
and the plasma radiation losses per unit volume and Fr,
Fz are the radial and axial components of the Lorentz
force.

Since the characteristic time of variation of the plasma
temperature and velocity is much longer than that of the
EM field, the terms QJ , Fr and Fz in the above equations
can be expressed, by taking the average over one oscilla-
tion period, as:

QJ =
1
2
σ |Eθ|2 (35)

Fr =
1
2
σ� [EθB

∗
z ] (36)

Fz = −1
2
σ� [EθB

∗
r ] (37)

where the superscript ∗ denotes the complex conjugates.
The behaviour of the volumetric radiation losses as

a function of plasma temperature, T , is supposed to be
given by the classic relation adopted in [12], which assumes
QR = 0 when T ≤ 9500 K and

QR = 5600 (T − 9500) + 181 (T − 9500)2 (38)

otherwise (T being expressed in K and QR in W/m3).
Boundary conditions for the plasma temperature and

velocity are the same used in [10].

3 Computational technique

In spite of many advantages offered by the FLUENT c©
code for studying complex fluid dynamic phenomena,
its use in the modelling of inductive plasmas is not
straightforward. This is due to the fact that, at present,
FLUENT c© solves, by default, only mass, momentum and
energy conservation equations but does not provide any
built-in module for EM field calculations. To overcome this
difficulty, two different techniques exploiting FLUENT c©
customization capabilities can be followed.

The first technique, which has been proposed in [10],
makes use of two user-defined scalar (UDS) variables for
the real and imaginary parts of the complex vector po-
tential, in addition to the ones basically employed by
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Table 1. Torch dimensions and operating conditions.

L0 = 50 mm r2 = 3.7 mm δm = 2 mm Q1 = 1 slpm P = 5 kW
L1 = 60 mm r3 = 18.8 mm δt = 2.2 mm Q2 = 3 slpm f = 3 MHz
L2 = 124 mm R0 = 25 mm δw = 3.5 mm Q3 = 31 slpm
LT = 200 mm Rc = 33 mm dc = 6 mm

the FLUENT c© solver, that is, temperature and veloc-
ity components of the fluid. For each generic UDS vari-
able, φ, added to the basic model, FLUENT c© automati-
cally solves an extra conservation-like equation having the
general form:

∇ · (ρvφ) = ∇ · (Γφ ∇φ) + Sφ (39)

v being the fluid velocity, and Γφ, Sφ, to be specified
by the user, the diffusion coefficient and the source term
per unit volume, respectively. By suitably setting φ, Γφ

and Sφ, it is easy to observe that equation (39) can repro-
duce both the real and imaginary parts of vector potential
equation in all the zones of the computational domain. For
example, in the plasma region, in which Jcoil = 0, equa-
tion (17) can be simply reproduced by taking φ = Aθr,
Γφ = 1 and Sφ = µ0σωAθi.

Although quite simple to implement, the UDS tech-
nique is not the best way of using FLUENT c© for treat-
ing the EM field. In fact, in the current version of the
code, all governing equations are to be specified for the
same computational domain. Besides, FLUENT c© can
solve UDS equations only inside fluid regions. This means
that when the UDS technique is used in conjunction with
the MDBC or EF approaches for the EM field calcula-
tions, fluid dynamic equations must be solved also out-
side the torch region, treating all zones of the domain as
if they were occupied by a fluid. As a consequence, ficti-
tious source terms must be introduced in the momentum
and energy equations to obtain a zero velocity field in the
regions where there is no plasma and to impose a con-
stant temperature (a value of 300 K is assumed in this
work) outside the plasma confinement tube [10]. This re-
sults in a somewhat “unnatural” use of the code, that
slows down its convergence velocity and may cause nu-
merical instabilities.

To better exploit the FLUENT c© capabilities, a new
technique has been developed in this work for the treat-
ment of the EM field. This technique uses an external user-
defined function (UDF) linked to the FLUENT c© code,
which completely solves the vector potential equations by
means of a finite difference approach, while leaving to the
FLUENT c© solver the task of computing only the plasma
temperature and velocity fields in the torch region. The
electromagnetic field is calculated on a structured, orthog-
onal grid defined by the UDF, while flow field equations
are solved on a different mesh generated by means of the
FLUENT c© pre-processor (GAMBIT c©).

Each turn of the induction coil is modelled with a series
of 13 current-carrying rings (see Fig. 2), assuming in it a
uniform distribution of the current density, Jcoil, so that:
Jcoil = I/Sc, being I the current flowing through the coil
and Sc the cross section of a single turn.

Within the framework of the UDF technique, all three
approaches described above for the EM field treatment
(ST, MDBC and EF) have been implemented.

The UDF and the FLUENT c© solver interact in the
following manner: at each iteration, the UDF receives, as
input data, the values of the plasma electric conductiv-
ity calculated by the FLUENT c© solver and gives back to
it the electric and magnetic field distributions inside the
torch region. The calculated EM field is then used by the
FLUENT c© solver for updating the values of the Lorentz
force and of the Joule heating rate in Navier-Stokes and
energy equations. A suitable numerical routine has been
developed, as a part of the UDF, with the purpose of inter-
polating input and output data from the electromagnetic
grid to the fluid dynamic one and vice versa. Although this
routine has been designed to work with both structured
and unstructured fluid dynamic meshes, only structured
grids with quadrilateral cells have been used in this work
for the solution of flow field equations.

Since, in the UDF approach, the FLUENT c© solver is
used to calculate only temperature and velocity fields in
a computational domain limited to the torch region, the
above-mentioned drawbacks arising within the UDS tech-
nique are eliminated: in the new approach, all solid zones
of the fluid dynamic domain (such as the plasma confine-
ment tube and the injection probe for the carrier gas)
can be treated in a consistent manner and, accordingly,
no fictitious terms need to be introduced in momentum
and energy equations. Moreover, flow field equations are
solved only inside the torch region. This results in an over-
all saving of computational time per single iteration with
respect to the UDS method.

Besides that, as the UDF approach solves vector po-
tential and flow field equations on separated grids, the
dimensions of the extended EM field domain can be fixed
independently from those of the fluid dynamic mesh. This
represents a useful advantage, in particular when the flow
field domain is greater than the torch region (e.g., in the
study of plasma-spray applications by means of models
taking into account both the torch and plasma down-
stream zones).

4 Results and discussion

All the calculations have been carried out by means of the
FLUENT c© code for the torch geometry shown in Figure 1
(Tekna Plasma Systems Inc. PL-50 model); dimensions of
the torch and operating conditions used in the simulations
are given in Table 1. The discharge is assumed to be oper-
ated in argon at atmospheric pressure. The net power dis-
sipated in the plasma, P , is 5 kW (even though the Tekna
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Fig. 3. Isocontours of the real part of the electric field [V/m] as obtained by means of the UDF technique within (a) EF and
(b) MDBC approaches (radial dimension of the extended grid: Ret = 12.5 cm) and within (c) ST approach for the EM field
treatment.
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PL-50 plasma torch can be operated under much higher
power conditions), while the RF generator frequency, f , is
set at 3 MHz. Carrier, plasma and sheath gases are all in-
jected axially in the torch (with flow rates Q1, Q2 and Q3,
respectively).

Figures 3 and 4 show the distributions of the real and
imaginary parts of the electric field as calculated by means

of the UDF technique, using the three above-mentioned
approaches for the EM field treatment. For the EF and
MDBC approaches, a non-uniform, structured grid with
81(r) × 71(z) points has been employed for the solution
of the vector potential equations, using a computational
domain which extends outside the torch region both in
the radial and axial directions (see Fig. 2a). The radial
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Fig. 5. Isocontours of the stream function of the real part of the magnetic field as obtained by means of the UDF technique
within (a) EF and (b) MDBC approaches (radial dimension of the extended grid: Ret = 12.5 cm) and within (c) ST approach
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0.0, respectively. The results shown in this figure have been scaled to positive values and then normalized to unity.

dimension of the extended grid, Ret, is 125 mm, corre-
sponding to the value adopted in [10], while the bound-
aries of the domain in the axial direction are placed 47 mm
and 30 mm away from the inlet and exit sections of
the torch, respectively. A uniform, structured mesh with
57(r)×200(z) quadrilateral elements has been used for the
fluid dynamic calculations in the torch zone. Within the
ST approach, vector potential equations are solved in the

plasma region only, on a grid which coincides with the fluid
dynamic one, while the values of the electromagnetic field
outside the discharge zone are determined at the end of
the whole computation by means of the current-carrying
loop formula, summing the contributions of the currents
calculated in the plasma and of those flowing through the
rings used to represent the induction coil (see Fig. 2a for
the details of the coil discretization).
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Fig. 7. Radial profiles of the real part of the electric field, Eθr, at z = 10.2 cm, as obtained by means of the UDF technique
within ST approach (—) for the EM field treatment and within EF (· · · ) and MDBC (◦) approaches with different radial
extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c); 7.5 cm (d); 6 cm (e); 4 cm (f).

Figures 3 and 4 clearly show that, although in the
plasma region the distributions of the electric field ob-
tained by the three different approaches considered here
for the EM field treatment are nearly the same, the results
given by the MDBC approach (Figs. 3b and 4b) far away
from the torch zone are more precise than those calculated
by the EF method (Figs. 3a and 4a), as demonstrated by
the comparison of such results with the corresponding “ex-
act” ones obtained by the ST model (Figs. 3c and 4c). This
is due to the fact that, unlike the MDBC approach, the
EF one imposes the vanishing of the electric field at finite
distances from the torch, which is clearly not a realistic
condition. The isocontours of the stream function of the
real and imaginary parts of the corresponding magnetic
fields are presented in Figures 5 and 6, respectively: the

EF, MDBC and ST approaches still give the same results
in the plasma and coil regions, while strong differences be-
tween the EF and MDBC models arise faraway from the
torch zone. As expected, the comparisons of Figures 5a,
5b with Figure 5c and of Figures 6a, 6b with Figure 6c
confirm that the MDBC approach is more precise than
the EF one in describing the EM field outside the plasma
region. Therefore, the use of the MDBC model might be
helpful for those applications in which the prediction of
the EM field distribution outside the torch zone is also
important (e.g., in the design of electromagnetic shields
for RF plasma systems or for studying torches with fer-
rite around the coil [13,14]), as it combines the precision
of the ST approach with the simplicity of the EF one.
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Fig. 8. Radial profiles of the imaginary part of the electric field, Eθi, at z = 10.2 cm, as obtained by means of the UDF technique
within ST approach (—) for the EM field treatment and within EF (· · · ) and MDBC (◦) approaches with different radial
extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c); 7.5 cm (d); 6 cm (e); 4 cm (f).

Moreover, the MDBC approach permits a decrease of
the dimension of the extended grid, so reducing the com-
putational effort, while still guaranteeing a good preci-
sion of the solution in the zone extending outside the
discharge region as well. This is well evidenced in Fig-
ures 7 and 8, which show the radial profiles of the real
and imaginary parts of the electric field, respectively, at
z = 102 mm, as calculated by the ST model and by
the EF and MDBC approaches, for different radial di-
mensions of the extended domain. For each value of Ret

considered, the number of discretization points in the r-
direction has been suitably chosen, so to keep the step
sizes of the EM grid constant. The different spacing be-
tween points appearing in the MDBC curves is due to the
non-uniformity of the mesh. For Ret = 125 mm, all ap-
proaches for treating the EM field give almost the same
results. However, as the radial extension of the grid is re-
duced, the behaviour of the electric field obtained by the
EF approach in the region extending outside the torch
domain differs more and more from those calculated by
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Fig. 9. Radial profiles of the real part of the axial magnetic field, Hzr, at z = 10.2 cm, as obtained by means of the UDF technique
within ST approach (—) for the EM field treatment and within EF (· · · ) and MDBC (◦) approaches with different radial
extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c); 7.5 cm (d); 6 cm (e); 4 cm (f).

the ST and MDBC ones, since the vector potential near
the coil zone is considerably different from zero. On the
contrary, the MDBC approach continues to give accept-
able results also for small extensions of the grid outside the
torch region. For Ret < 60 mm, the electric field calculated
by means of the EF approach starts to deviate from the
solution obtained by the other two approaches also inside
the plasma zone, as demonstrated by Figures 11 and 12,
which show the axial profiles of the real and imaginary
parts of the electric field at the inner surface of the plasma

confinement tube, for the same cases as Figures 7 and 8.
A similar behaviour can be observed also for the magnetic
field, as shown in Figures 9, 10 and in Figures 13, 14, in
which the same kinds of results as Figures 7, 8 and 11, 12
are presented.

In order to validate the new UDF technique proposed
in this work, the radial profiles of the electric and magnetic
fields for the case of the EF approach with Ret = 125 mm
(see Figs. 7a, 8a and 9a, 10a) have been compared to the
corresponding literature results [10] obtained by Boulos



66 The European Physical Journal D

0 2 4 6 8 10 12
−2

−1.5

−1

−0.5

0

0.5

r [cm]

H
z 

i [1
03  A

/m
]

(a)

0 2 4 6 8 10
−2

−1.5

−1

−0.5

0

0.5

r [cm]

H
z 

i [1
03  A

/m
]

(b)

0 2 4 6 8 
−2

−1.5

−1

−0.5

0

0.5

r [cm]

H
z 

i [1
03  A

/m
]

(c)

0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

r [cm]

H
z 

i [1
03  A

/m
]

(d)

0 2 4 6
−2

−1.5

−1

−0.5

0

0.5

r [cm]

H
z 

i [1
03  A

/m
]

(e)

0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

r [cm]

H
z 

i [1
03  A

/m
]

(f)

Fig. 10. Radial profiles of the imaginary part of the axial magnetic field, Hzi, at z = 10.2 cm, as obtained by means of the UDF
technique within ST approach (—) for the EM field treatment and within EF (· · · ) and MDBC (◦) approaches with different
radial extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c); 7.5 cm (d); 6 cm (e); 4 cm (f).

et al. using the UDS technique. A computational grid ex-
tending outside the torch region only in the radial direc-
tion was adopted in [10], assuming Ret = 125 mm. The
comparisons show a full agreement for both real and imag-
inary parts of the EM field profiles, also proving that ex-
tending the computational domain beyond the torch zone
in the axial direction has a minor impact on the calcu-
lated EM field distribution in the central region of the
discharge.

A selection of results obtained by the MDBC approach
for the case with Ret = 125 mm are presented in Fig-
ures 15, 16, 17 and 18, showing isocontours of temperature
field, stream function velocity, power density distribution
and radial component of the Lorentz force in the plasma,
respectively, along with the profiles of plasma tempera-
ture and axial velocity along the centerline of the torch
(Fig. 19). Essentially the same behaviour can be seen with
regard to the EF and ST models. A good agreement can be
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Fig. 11. Axial profiles of the real part of the electric field, Eθr, at the inner wall of the plasma confinement tube (r = 2.5 cm),
as obtained by means of the UDF technique within ST approach (—) for the EM field treatment and within EF (· · · ) and
MDBC (◦) approaches with different radial extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c); 7.5 cm (d); 6 cm
(e); 4 cm (f).

observed between these results and those calculated in [10]
for the same torch dimensions and operating conditions,
but using the UDS technique within the EF approach.
This is actually what one would expect, as the boundary
of the extended grid in the radial direction is taken far
enough from the torch zone to obtain consistent solutions
between the two approaches (EF and MDBC) employed
for the EM field calculations. In our UDF-MDBC simula-
tion, the coil current needed to sustain the 5 kW plasma

discharge is 150 A, which is in acceptable agreement with
the value of 161 A reported in [10].

In order to evaluate the performances of our new
UDF technique, the calculations carried out by means
of such technique for the case of the EF approach with
Ret = 125 mm, have been accomplished using also the
UDS method, following what was done in [10]. In our case,
a structured grid with quadrilateral elements has been
employed inside the torch region, while an unstructured
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Fig. 12. Axial profiles of the imaginary part of the electric field, Eθi, at the inner wall of the plasma confinement tube
(r = 2.5 cm), as obtained by means of the UDF technique within ST approach (—) for the EM field treatment and within EF
(· · · ) and MDBC (◦) approaches with different radial extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c); 7.5 cm
(d); 6 cm (e); 4 cm (f).

mesh with triangular cells, extending outside the plasma
zone only in the radial direction, has been adopted (see
Fig. 2b). Figure 20 shows the comparison between the
computational time over one single iteration required by
the two techniques: asymptotic values of about 1 and 0.4
s have been obtained for the UDS and UDF approaches,
respectively; this proves that the latter is characterized

by better performances, as a result of the fact that fluid
dynamic equations are solved only in the torch domain.

5 Conclusions

In this paper, a new technique has been developed for nu-
merically simulating the behaviour of inductively coupled
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Fig. 13. Axial profiles of the real part of the axial magnetic field, Hzr, at the inner wall of the plasma confinement tube
(r = 2.5 cm), as obtained by means of the UDF technique within ST approach (—) for the EM field treatment and within
EF (· · · ) and MDBC (◦) approaches with different radial extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c);
7.5 cm (d); 6 cm (e); 4 cm (f).

plasma torches by means of the CFD commercial code
FLUENT c©.

Unlike the method previously proposed in the liter-
ature, which employed user-defined scalars for the real
and imaginary parts of the vector potential in addition
to the variables basically used by the commercial software
to describe fluid temperature and velocity, the new tech-
nique presented here consists of a linked external function

which completely solves the electromagnetic field equa-
tions, while letting the FLUENT c© built-in module calcu-
late only temperature and flow fields inside the torch re-
gion. Computations carried out by using both techniques
have proved that the new one converges faster and also
eliminates some numerical problems which could arise us-
ing the method based on user-defined scalars.
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Fig. 14. Axial profiles of the imaginary part of the axial magnetic field, Hzi, at the inner wall of the plasma confinement tube
(r = 2.5 cm), as obtained by means of the UDF technique within ST approach (—) for the EM field treatment and within
EF (· · · ) and MDBC (◦) approaches with different radial extensions of the EM grid: Ret = 12.5 cm (a); 11 cm (b); 9 cm (c);
7.5 cm (d); 6 cm (e); 4 cm (f).

Different approaches for the treatment of the electro-
magnetic field have been implemented within the new
FLUENT c©-based technique described in this work. In
particular, the results obtained by using both magnetic
dipole and vanishing boundary conditions in the frame-
work of an EM extended grid model have been compared
with those given by the standard approach, based on exact
integral boundary conditions for the vector potential. The
comparisons show that, although for sufficient extension
of the electromagnetic grid outside the torch region the

two methods produce essentially the same solution, for
small radial dimensions of the mesh outside the plasma
zone, the magnetic dipole approach is more precise than
that using vanishing vector potential conditions.

Future developments will lie in the use of the UDF
technique also in conjunction with the FLUENT c© built-
in models for the study of turbulent fluid dynamic regimes
in the torch. The authors believe, also on the basis of some
preliminary tests, that the UDF method should greatly re-
duce the numerical instabilities associated to the solution
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Fig. 15. Plasma temperature field [103 K] as obtained by
means of the UDF technique within MDBC approach for the
EM field treatment with Ret = 12.5 cm.
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Fig. 17. Power density distribution [107 W/m3] in the plasma,
as obtained by means of the UDF technique within MDBC
approach for the EM field treatment with Ret = 12.5 cm.
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Fig. 16. Isocontours of the stream function of the plasma
velocity as obtained by means of the UDF technique within
MDBC approach for the EM field treatment with Ret =
12.5 cm. Minimum calculated value: −1.14× 10−5 kg/s; maxi-
mum calculated value: 1.52 × 10−4 kg/s. The results shown in
this figure have been scaled to positive values and then nor-
malized to unity.
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Fig. 18. Radial component of the Lorentz force (−Fr)
[103 N/m3], as obtained by means of the UDF technique
within MDBC approach for the EM field treatment with Ret =
12.5 cm.
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Fig. 19. Axial profiles of (a) plasma temperature and (b) axial
velocity along the centerline of the torch, as obtained by means
of the UDF technique within MDBC approach for the EM field
treatment with Ret = 12.5 cm.

of turbulence equations, which tend to arise when using
the UDS approach as a consequence of treating all regions
of the computational domain as a fluid.
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Fig. 20. Computational time over one single iteration required
by (—) UDS and (- - -) UDF techniques within EF approach
for the EM field treatment with Ret = 12.5 cm.
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